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Abstract

Pre-trained visually grounded language mod-
els such as ViLBERT, LXMERT, and UNITER
have achieved significant performance im-
provement on vision-and-language tasks but
what they learn during pre-training remains un-
clear. In this work, we demonstrate that cer-
tain attention heads of a visually grounded lan-
guage model actively ground elements of lan-
guage to image regions. Specifically, some
heads can map entities to image regions, per-
forming the task known as entity grounding.
Some heads can even detect the syntactic re-
lations between non-entity words and image
regions, tracking, for example, associations be-
tween verbs and regions corresponding to their
arguments. We denote this ability as syntactic
grounding. We verify grounding both quanti-
tatively and qualitatively, using Flickr30K En-
tities as a testbed.

1 Introduction

Recently, BERT (Devlin et al., 2019) variants
with vision such as ViLBERT (Lu et al., 2019),
LXMERT (Tan and Bansal, 2019), and UNITER
(Chen et al., 2019) have achieved new records on
several vision-and-language reasoning tasks, e.g.
VQA (Antol et al., 2015), NLVR2 (Suhr et al.,
2019), and VCR (Zellers et al., 2019). These
pre-trained visually grounded language models
use Transformers (Vaswani et al., 2017) to jointly
model words and image regions. They are pre-
trained on paired image-text data, where given parts
of the input the model is trained to predict the miss-
ing pieces. Despite their strong performance, it
remains unclear if these models have learned the
desired cross-modal representations.

Conversely, a large body of work (Liu et al.,
2019; Tenney et al., 2019; Clark et al., 2019) has fo-
cused on understanding the internal behaviours of
pre-trained language models (Peters et al., 2018b;

Radford et al., 2018; Devlin et al., 2019) and find
that they capture linguistic features such as POS,
syntactic structures, and coreferences. This inspires
us to ask: what do visually grounded language mod-
els learn during pre-training?

Following Clark et al. (2019), we find that cer-
tain attention heads of a visually grounded lan-
guage model acquire an intuitive yet fundamental
ability that is often believed to be a prerequisite for
advanced visual reasoning (Plummer et al., 2015):
grounding of language to image regions.

We first observe that some heads can perform
entity grounding, where entities that have direct
semantic correspondences in the image are mapped
to the correct regions. For example, in Figure 1,
the word “man” attends to the person on the left of
the image. Further, non-entity words often attend
to image regions that correspond to their syntactic
neighbors and we call this syntactic grounding.
For example, “wearing” is attending to its subject,
the man in the image. We argue that syntactic
grounding actually complements entity grounding
and that it is a natural byproduct of cross-modal
reasoning. For example, to ground “man” to the
person on the left rather than other pedestrians, the
model needs to identify the syntactic relationships
among “man”, “wearing”, “white”, and “shirt” and
ground “shirt” and “man” subsequently. During
such process, it is helpful and natural that “wearing”
attends to the man in the image.

We verify such phenomena by treating each at-
tention head as a ready-to-use classifier (Clark
et al., 2019) that given an input word, always out-
puts the most-attended-to image region. Using
Flickr30K Entities (Plummer et al., 2015) as a test
bed, we demonstrate that certain heads could per-
form entity and syntactic grounding with an accu-
racy significantly higher than a rule-based base-
line. Further, higher layers tend to have higher
grounding accuracy, suggesting that the model is
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Figure 1: Attention weights of some selected heads in a pre-trained visually grounded language model. In high
layers (e.g., the 10-th and 11-th layer), the model can implicitly grounding visual concepts (e.g., “other pedestrians”
and “man wearing white shirt”). The model also captures certain syntactic dependency relations (e.g., “walking”
is aligned to the man region in the 6-th layer). The model also refines its understanding over the layers, incorrectly
aligning “man” and “shirt” in the 3-rd layer but correcting them in higher layers.
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Figure 2: The architecture of VisualBERT. Image re-
gions and language are combined with a Transformer
to allow the self-attention to discover implicit align-
ments between language and vision. n. It is pre-trained
with a masked language modeling (Objective 1), and
sentence-image prediction task (Objective 2), on cap-
tion data and then fine-tuned for different tasks.

refining its understanding of vision and language
layer by layer. Additionally, we provide a quali-
tative analysis exemplifying these phenomena. A
long version of this paper is at https://arxiv.
org/abs/1908.03557. Our code is available at
https://github.com/uclanlp/visualbert.

2 Model

Several pre-trained visually grounded models have
been proposed recently, and they are conceptually
similar yet vary in design details, making evalu-
ating them complicated and difficult. Thus for
simplicity, we propose a simple and performant
baseline, VisualBERT (see Figure 2), and base our
analysis on this model. We argue that our analysis
on VisualBERT can be generalized to other similar
models as all these models share the following two
core ideas: (1) image features extracted from object
detectors such as Faster-RCNN (Ren et al., 2015)
are fed in a Transformer-based model along with
text; (2) the model is pre-trained on image-text data

Task Baseline VisualBERT

VQA 68.71 70.80
VCR 44.0 52.4
NLVR2 53.5 67.3
Flickr30K 69.69 71.33

Table 1: Performance of VisualBERT on four bench-
marks. On VQA, we compare to Pythia v0.3 (Singh
et al., 2019) and report on test-dev; on VCR, we com-
pare to R2C (Zellers et al., 2019) and report test accu-
racy on Q→AR; on NLVR2, we compare to MaxEnt
(Suhr et al., 2019) and report on Test-P; on Flickr30K,
we compare to BAN (Kim et al., 2018) and report the
test recall@1.

with a masked visually grounded langauge model
objective. Below we introduce VisualBERT briefly
and leave details to the Appendix A.

Input to VisualBERT includes a text segment and
an image. The image is represeted as a set of visual
embeddings, where each embedding vector corre-
sponds to a bounding region in the image, derived
from an object detector (Ren et al., 2015). Text
and visual embeddings are then passed through
multiple Transformer layers to build joint represen-
tations. VisualBERT is pre-trained on the COCO
dataset (Chen et al., 2015), concisting of around
100K images with 5 captions each. We use two
objectives for pre-training. (1) Masked language
modeling with the image. Some elements of text
input are masked and the model learns to predict
the masked words based on the remaining text and
visual context. (2) Sentence-image prediction. For
COCO, where there are multiple captions corre-
sponding to one image, we provide a text segment
consisting of two captions. One of the caption is
describing the image, while the other has a 50%
chance to be another corresponding caption and a

https://arxiv.org/abs/1908.03557
https://arxiv.org/abs/1908.03557
https://github.com/uclanlp/visualbert
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Figure 3: Entity grounding accuracy of the attention
heads organized by layer. The rule-based baseline is
drawn as the grey line. We find that certain heads
achieve high accuracy while the accuracy peaks at
higher layers.

50% chance to be a randomly drawn caption. The
model is trained to distinguish these two situations.

Extensive experiments on four vision-and-
language datasets (Goyal et al., 2017; Zellers et al.,
2018; Suhr et al., 2019; Plummer et al., 2015) ver-
ify that pre-trained VisualBERT exceeds all com-
parable baselines significantly. A summary of the
results is present in Table 1. See the Appendix B for
details. Some of the afore-mentioned pre-trained
visually grounded language models use additional
pre-training data or parameters and achieve better
performance. As this paper focuses on the analysis,
we do not focus on comparing the performance of
VisualBERT and other similar models. For the rest
of the paper, we analyze a VisualBERT that is con-
figured the same as BERTBase with 12 layers and
144 self-attention heads in total. The model is pre-
trained on COCO. To mitigate the domain differ-
ence between the diagnostic dataset Flickr30K and
COCO, we perform additional pre-training on the
training set of Flickr30K with the fore-mentioned
masked language modeling objective with the im-
age.

3 Experiment

3.1 Quantitative analysis
Entity Grounding We first focus on entity
grounding and use the validation set of Flickr30K
Entities for evaluation. The dataset contains image-
caption pairs and annotates the entities in the cap-
tions and the corresponding image regions. For
each annotated entity and for each attention head
of VisualBERT, we take the bounding region which
receives the most attention weight as the prediction.
An entity could attend to not only the image regions

Type Baseline Acc Head

det 19.59 54.01 10-1
pobj 17.34 32.82 11-11
amod 18.67 45.96 10-9
nsubj 23.19 44.64 5-1
prep 20.61 49.27 9-11
dobj 9.82 30.24 11-11
punct 23.32 48.80 3-6
partmod 21.41 38.15 4-9
nn 16.33 34.06 10-9
num 23.15 67.44 9-11

Table 2: The best performing heads on grounding 10
most common dependency relationships. We only con-
sider heads that are allocating on average more than
20% of the attention from source words to all im-
age regions. A particular attention head is denoted as
<layer>-<head number>.

but also other words in the text. For this evaluation,
we regard the image region that receives the most
attention weight compared to other image regions
as the prediction, without considering other words
in the text. The predicted region is considered cor-
rect as long as it overlaps with the gold bounding
region with a IoU≥ 0.5 (Kim et al., 2018). We also
consider a rule-based baseline that always chooses
the region with the highest detection confidence.
We report the accuracy for all 144 attention heads in
VisualBERT and the baseline in Figure 3. Despite
that some heads are accurate at entity grounding,
they are not actively attending to the image regions.
For example, a head might be allocating 10% of
its attention weights to all image regions, but it
assigns the most of the 10% weights to the correct
region. We regard heads paying on average more
than 20% of its attention weights from the entities
to the regions as “actively paying attention to the
image” and draw then as dark and large dots, while
the others are drawn as light and small dots.

We make the following two observations. First,
certain heads perform entity grounding with a re-
markably high accuracy. This is consistent with
the observations in Clark et al. (2019) and Voita
et al. (2019) that the attention heads specialize in
different things. The best of all heads even achieves
a high accuracy of 50.77 compared to the baseline
17.33. Further, the grounding accuracy peaks in
higher layers. This resembles what Tenney et al.
(2019) find, in that BERT also refines its under-
standing of the input over the layers.

Syntactic Grounding As motivated before,
alignments between words other than nouns and



Figure 4: Accuracy of attention heads of VisualBERT for syntactic grounding on specific dependency relationships
(“pobj”, “nsubj”, “amod”). The grey lines denote a baseline that always chooses the region with the highest
detection confidence. We observe that VisualBERT is capable of detecting these dependency relationships without
direct supervision.

image regions could also be helpful for visual rea-
soning. More specifically, if two words are con-
nected with a dependency relation, w1

r←→ w2,
and w1 is an entity aligned to an image region, we
would like to know how often the attention heads
attend from w2 to the regions corresponding to w1.
For evaluation, we parse all sentences in the valida-
tion set of Flickr30K using AllenNLP (Dozat and
Manning, 2017; Gardner et al., 2018) and use the
parser output as the gold parsing annotation.

We find that for each dependency relationship,
there exists at least one head that significantly out-
performs guessing the most confident bounding
region. We report the 10 most common relations in
Table 2 and plot the syntactic grounding accuracy
of three particularly interesting dependency rela-
tionships in Figure 4. Similar to what we observe
for entity grounding, the model becomes more ac-
curate on syntactic grounding in higher layers.

3.2 Qualitative Analysis

Finally, we showcase several interesting examples
of how VisualBERT performs grounding in Figure
1 and Figure 5. To generate these examples, for
each ground-truth box, we show a predicted bound-
ing region closest to it and manually group the
bounding regions into different categories. We also
include regions that the model is actively attending
to, even if they are not present in the gold annota-
tions (marked with an asterisk). We then aggregate
the attention weights from words to those regions
in the same category. We show the best heads of
6 layers that achieve the highest entity grounding
accuracy but we find that they also exhibit a certain
level of syntactic grounding.

We observe the same behaviours as in the quan-
titative analysis, in that VisualBERT not only per-
forms grounding but also refines its predictions
through successive Transformer layers. For ex-

ample, in the bottom image in Figure 5, initially
the word “husband” and the word “woman” both
assign significant attention weight to regions corre-
sponding to the woman. By the end of the computa-
tion, VisualBERT has disentangled the woman and
man, correctly aligning both. Furthermore, there
are many examples of syntactic alignments. In the
same image, the word “teased” aligns to both the
man and woman while “by” aligns to the man.

4 Related Work

There is a long research history of bridging vision
and language (Chen et al., 2015; Antol et al., 2015;
Zellers et al., 2019) with the lasted advances being
visually grounded language models (Lu et al., 2019;
Alberti et al., 2019; Li et al., 2019; Su et al., 2019;
Tan and Bansal, 2019; Chen et al., 2019). How-
ever, little analysis has been done on understanding
what vision-and-language models learn. Previous
works on VQA and image captioning (Yang et al.,
2016; Anderson et al., 2018; Kim et al., 2018) have
only shown qualitative examples on the grounding
ability of the models, while another line of work
focuses on designing dedicated models for the en-
tity grounding task (Xiao et al., 2017; Datta et al.,
2019). We, however, present a quantitative study
on whether visually grounded language models
acquire the grounding ability during pre-training
without explicit supervision.

Our work is inspired by papers on analyzing pre-
trained language models. One line of work uses
probing tasks to study the internal representations
(Peters et al., 2018a; Liu et al., 2019; Tenney et al.,
2019) while another studies the attention mecha-
nism (Clark et al., 2019; Voita et al., 2019; Koval-
eva et al., 2019). We follow the latter but we believe
the grounding behaviour could also be probed in
the internal representations of VisualBERT.
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Figure 5: Attention weights of 6 selected heads in VisualBERT where alignments match Flickr30k annotations.

5 Conclusion and Future Work

We have presented an analysis on the attention
maps of VisualBERT, a proposed visually grounded
language model. We note that the grounding be-
haviour we have found is linguistically inspired, as
entity grounding can be regarded as cross-modal
entity coref resolution while syntactic grounding
can be regarded as cross-modal parsing. Moreover,
VisualBERT exhibits a hint of cross-modal pro-
noun resolution, as in the bottom image of Figure
5, the word “her” is resolved to the woman. For
future work, it would be interesting to see if more
linguistically-inspired phenomena can be systemat-
ically found in cross-modal models.

Acknowledgement

We would like to thank Xianda Zhou for help with
experiments as well as Patrick H. Chen, members
of UCLA NLP, and anonymous reviewers for help-
ful comments. We also thank Rowan Zellers for
evaluation on VCR and Alane Suhr for evalua-
tion on NLVR2. Cho-Jui Hsieh acknowledges the
support of NSF IIS-1719097 and Facebook Re-
search Award. This work was supported in part by
DARPA MCS program under Cooperative Agree-
ment N66001-19-2-4032. The views expressed are
those of the authors and do not reflect the official
policy or position of the Department of Defense or
the U.S. Government.



References
Chris Alberti, Jeffrey Ling, Michael Collins, and David

Reitter. 2019. Fusion of detected objects in text for
visual question answering. ArXiv, abs/1908.05054.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
CVPR.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual question an-
swering. In ICCV.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft COCO cap-
tions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2019. UNITER: Learning univer-
sal image-text representations. arXiv preprint
arXiv:1909.11740.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. Black-
boxNLP.

Samyak Datta, Karan Sikka, Anirban Roy, Karuna
Ahuja, Devi Parikh, and Ajay Divakaran. 2019.
Align2ground: Weakly supervised phrase grounding
guided by image-caption alignment. ICCV.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. ICLR.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software.

Ross Girshick, Ilija Radosavovic, Georgia Gkioxari,
Piotr Dollár, and Kaiming He. 2018. Detectron.
https://github.com/facebookresearch/
detectron.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
V in VQA matter: Elevating the role of image under-
standing in Visual Question Answering. In CVPR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In CVPR.

Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus
Rohrbach, Dhruv Batra, and Devi Parikh. 2018.
Pythia v0. 1: the winning entry to the VQA chal-
lenge 2018. arXiv preprint arXiv:1807.09956.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In CVPR.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In NeurIPS.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. ICLR.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. arXiv preprint arXiv:1908.08593.

Gen Li, Nan Duan, Yuejian Fang, Daxin Jiang, and
Ming Zhou. 2019. Unicoder-VL: A universal en-
coder for vision and language by cross-modal pre-
training. ArXiv, abs/1908.06066.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In NAACL-HLT.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems.

Matthew Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018a. Dissecting contextual
word embeddings: Architecture and representation.
In EMNLP, pages 1499–1509.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018b. Deep contextualized word rep-
resentations. In NAACL-HLT.

Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In ICCV.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. OpenAI.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards real-time ob-
ject detection with region proposal networks. In
NeurIPS.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards VQA mod-
els that can read. In CVPR.

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron


Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2019. VL-BERT: Pre-
training of generic visual-linguistic representations.
arXiv preprint arXiv:1908.08530.

Alane Suhr, Stephanie Zhou, Iris Zhang, Huajun Bai,
and Yoav Artzi. 2019. A corpus for reasoning about
natural language grounded in photographs. ACL.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In EMNLP.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. ACL.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Fanyi Xiao, Leonid Sigal, and Yong Jae Lee. 2017.
Weakly-supervised visual grounding of phrases with
linguistic structures. CVPR.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng,
and Alex Smola. 2016. Stacked attention networks
for image question answering. In CVPR.

Jun Yu, Jing Li, Zhou Yu, and Qingming Huang. 2019a.
Multimodal transformer with multi-view visual rep-
resentation for image captioning. arXiv preprint
arXiv:1905.07841.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and
Qi Tian. 2019b. Deep modular co-attention net-
works for visual question answering. In CVPR.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019. From recognition to cognition: Visual
commonsense reasoning. In CVPR.

Rowan Zellers, Mark Yatskar, Sam Thomson, and
Yejin Choi. 2018. Neural motifs: Scene graph pars-
ing with global context. In CVPR.

Appendix

We first introduce the model architecture and train-
ing process of VisualBERT (Section A). We then
show experiments on four vision-and-language
benchmarks (Section B). Ablation study is per-
formed to verify our design choices (Section C).

A VisualBERT

First we give background on BERT, then summa-
rize the adaptations we made to allow processing
images and text jointly, and finally explain our train-
ing procedure.

A.1 Background

BERT (Devlin et al., 2019) is a Trans-
former (Vaswani et al., 2017) with subwords (Wu
et al., 2016) as input and trained using language
modeling objectives. All of the subwords in an
input sentence are mapped to a set of embeddings,
E. Each embedding e ∈ E is computed as the
sum of 1) a token embedding et, specific to the
subword, 2) a segment embedding es, indicating
which part of text the token comes from (e.g.,
the hypothesis from an entailment pair) and 3) a
position embedding ep, indicating the position of
the token in the sentence. The input embeddings E
are then passed through a multi-layer Transformer
that builds up a contextualized representation of
the subwords.

BERT is commonly trained with two steps: pre-
training and fine-tuning. Pre-training is done using
a combination of two language modeling objec-
tives: (1) masked language modeling, where some
parts of the input tokens are randomly replaced
with a special token (i.e., [MASK]), and the model
needs to predict the identity of those tokens and (2)
next sentence prediction, where the model is given
a sentence pair and trained to classify whether they
are two consecutive sentences from a document.
Finally, to apply BERT to a particular task, a task-
specific input, output layer, and objective are intro-
duced, and the model is fine-tuned on the task data
from pre-trained parameters.

A.2 Model

The core of our idea is to reuse the self-attention
mechanism within the Transformer to implicitly
align elements of the input text and regions in the
input image. In addition to all the components of
BERT, we introduce a set of visual embeddings, F ,
to model an image. Each f ∈ F corresponds to
a bounding region in the image, derived from an
object detector. It is computed by summing three
embeddings: (1) fo, a visual feature representa-
tion of the bounding region of f , computed by a
convolutional neural network, (2) fs, a segment
embedding indicating it is an image embedding as
opposed to a text embedding, and (3) fp, a position



embedding, which is used when alignments be-
tween words and bounding regions are provided as
part of the input, and set to the sum of the position
embeddings corresponding to the aligned words
(see Section B.2). The visual embeddings are then
passed to a multi-layer Transformer along with the
original set of text embeddings, allowing the model
to implicitly discover alignments between both sets
of inputs, and build up a joint representation.1

A.3 Training VisualBERT
We would like to adopt a similar training procedure
as BERT but VisualBERT must learn to accommo-
date both language and visual input. Therefore we
reach to a resource of paired data: COCO (Chen
et al., 2015) that contains images each paired with
5 independent captions. Our training procedure
contains three phases:

Task-Agnostic Pre-Training As introduced be-
fore, we pre-train VisualBERT on COCO using two
visually-grounded language model objectives. (1)
Masked language modeling with the image. Some
elements of text input are masked and must be pre-
dicted but vectors corresponding to image regions
are not masked. (2) Sentence-image prediction. We
supply two captions in one training example and
one of the caption has a 50% chance to not match
the image. The model is trained to determine if the
provided captions is describing the image.

Task-Specific Pre-Training Before fine-tuning
VisualBERT to a downstream task, we find it bene-
ficial to train the model using the data of the task
with the masked language modeling with the image
objective. This step allows the model to adapt to
the new target domain.

Fine-Tuning This step mirrors BERT fine-
tuning, where a task-specific input, output, and
objective are introduced, and the model is trained
to maximize performance on the task.

B Experiment

We evaluate VisualBERT on four different types of
vision-and-language applications: (1) Visual Ques-
tion Answering (VQA 2.0) (Goyal et al., 2017), (2)
Visual Commonsense Reasoning (VCR) (Zellers
et al., 2019), (3) Natural Language for Visual Rea-
soning (NLVR2) (Suhr et al., 2019), and (4) Region-

1If text and visual input embeddings are of different di-
mension, we project the visual embeddings into a space of the
same dimension as the text embeddings.

to-Phrase Grounding (Flickr30K) (Plummer et al.,
2015), each described in more details in the follow-
ing sections. For all tasks, we use the Karpathy
train split (Karpathy and Fei-Fei, 2015) of COCO
for task-agnostic pre-training, which has around
100k images with 5 captions each. The Transformer
encoder in all models has the same configuration as
BERTBase: 12 layers, a hidden size of 768, and 12
self-attention heads. The parameters are initialized
from BERTBase released by Devlin et al. (2019).

For the image representations, each dataset we
study has a different standard object detector to
generate region proposals and region features. To
compare with them, we follow their settings, and
as a result, different image features are used for
different tasks (see details in the subsections).2 For
consistency, during task-agnostic pre-training on
COCO, we use the same image features as in the
end tasks. For each dataset, we evaluate three vari-
ants of our model:

VisualBERT: The full model with parameter ini-
tialization from BERT that undergoes pre-training
on COCO, pre-training on the task data, and fine-
tuning for the task.

VisualBERT w/o Early Fusion: VisualBERT
but where image representations are not combined
with the text in the initial Transformer layer but
instead at the very end with a new Transformer
layer. This allows us to test whether interaction
between language and vision throughout the whole
Transformer stack is important for performance.

VisualBERT w/o COCO Pre-training: Visual-
BERT but where we skip task-agnostic pre-training
on COCO captions. This allows us to validate the
importance of this step.

Following Devlin et al. (2019), we optimize all
models using SGD with Adam (Kingma and Ba,
2015). We set the warm-up step number to be 10%
of the total training step count unless specified oth-
erwise. Batch sizes are chosen to meet hardware
constraints and text sequences whose lengths are
longer than 128 are capped. Experiments are con-
ducted on Tesla V100s and GTX 1080Tis, and all
experiments can be replicated on 4 Tesla V100s
each with 16GBs of GPU memory. Pre-training on
COCO generally takes less than a day on 4 cards
while task-specific pre-training and fine-tuning usu-
ally take less. Other task-specific training details
are in the corresponding subsections.

2Ideally, we can use the best available detector and visual
representation for all tasks, but we would like to compare



Model Test-Dev Test-Std

Pythia v0.1 (Jiang et al., 2018) 68.49 -
Pythia v0.3 (Singh et al., 2019) 68.71 -

VisualBERT w/o Early Fusion 68.18 -
VisualBERT w/o COCO Pre-training 70.18 -
VisualBERT 70.80 71.00

Pythia v0.1 + VG + Other Data Augmentation (Jiang et al., 2018) 70.01 70.24
MCAN + VG (Yu et al., 2019b) 70.63 70.90
MCAN + VG + Multiple Detectors (Yu et al., 2019b) 72.55 -
MCAN + VG + Multiple Detectors + BERT (Yu et al., 2019b) 72.80 -
MCAN + VG + Multiple Detectors + BERT + Ensemble (Yu et al., 2019b) 75.00 75.23

Table 3: Model performance on VQA. VisualBERT outperforms Pythia(s), which are tested under a comparable
setting.

Model Q → A QA → R Q → AR
Dev Test Dev Test Dev Test

R2C (Zellers et al., 2019) 63.8 65.1 67.2 67.3 43.1 44.0
VL-BERT (Su et al., 2019) 73.7 74.0 74.5 74.8 55.0 55.5

VisualBERT w/o Early Fusion 70.1 - 71.9 - 50.6 -
VisualBERT w/o COCO Pre-training 67.9 - 69.5 - 47.9 -
VisualBERT 70.8 71.6 73.2 73.2 52.2 52.4

Table 4: Model performance on VCR. VisualBERT w/o COCO Pre-training outperforms R2C, which enjoys the
same resource while VisualBERT further improves the results.

B.1 VQA

Given an image and a question, the task is to
correctly answer the question. We use the VQA
2.0 (Goyal et al., 2017), consisting of over 1 million
questions about images from COCO. We train the
model to predict the 3,129 most frequent answers
and use image features from a ResNeXt-based
Faster RCNN pre-trained on Visual Genome (Jiang
et al., 2018). We report the results in Table 3, in-
cluding baselines using the same visual features
and number of bounding region proposals as our
methods (first section), our models (second sec-
tion), and other incomparable methods (third sec-
tion) that use external question-answer pairs from
Visual Genome (+VG) , multiple detectors (Yu
et al., 2019a) (+Multiple Detectors) and ensem-
bles of their models. In comparable settings, our
method is significantly simpler and outperforms
existing work.

B.2 VCR

VCR consists of 290k questions derived from 110k
movie scenes, where the questions focus on vi-
sual commonsense. The task is decomposed into
two multi-choice sub-tasks wherein we train indi-

methods on a similar footing.

vidual models: question answering (Q→ A) and
answer justification (QA→ R). Image features are
obtained from a ResNet50 (He et al., 2016) and
“gold” detection bounding boxes and segmentations
provided in the dataset are used3. The dataset also
provides alignments between words and bounding
regions that are referenced to in the text, which we
utilize by using the same position embeddings for
matched words and regions. Results on VCR are
presented in Table 4. We compare our methods
against the model released with the dataset which
builds on BERT (R2C) and list the top performing
single model on the leaderboard when we submit
VisualBERT to the leaderloard (VL-BERT). Our ab-
lated VisualBERT w/o COCO Pre-training enjoys
the same resource as R2C, and despite being sig-
nificantly simpler, outperforms it by a large margin.
The full model further improves the results. De-
spite substantial domain difference between COCO
and VCR, with VCR covering scenes from movies,
pre-training on COCO still helps significantly.

3In the fine-tuning stage, for VisualBERT (with/without
Early Fusion), ResNet50 is fine-tuned along with the model as
we find it beneficial. For reference, VisualBERT with a fixed
ResNet50 gets 51.4 on the dev set for Q → AR. The ResNet50
of VisualBERT w/o COCO Pre-training is not fine-tuned with
the model such that we could compare it with R2C fairly.



Model Dev Test-P Test-U Test-U (Cons)

MaxEnt (Suhr et al., 2019) 54.1 54.8 53.5 12.0
LXMERT (Tan and Bansal, 2019) 75.0 74.5 76.2 42.1

VisualBERT w/o Early Fusion 64.6 - - -
VisualBERT w/o COCO Pre-training 63.5 - - -
VisualBERT 67.4 67.0 67.3 26.9

Table 5: Comparison with the state-of-the-art models on NLVR2. The two ablation models significantly outperform
MaxEnt while the full model widens the gap.

Table 6: Comparison with the state-of-the-art model on the Flickr30K. VisualBERT holds a clear advantage over
BAN.

Model R@1 R@5 R@10 Upper Bound
Dev Test Dev Test Dev Test Dev Test

BAN (Kim et al., 2018) - 69.69 - 84.22 - 86.35 86.97 87.45

VisualBERT w/o Early Fusion 70.33 - 84.53 - 86.39 -
86.97 87.45VisualBERT w/o COCO Pre-training 68.07 - 83.98 - 86.24 -

VisualBERT 70.40 71.33 84.49 84.98 86.31 86.51

B.3 NLVR2

NLVR2 is a dataset for joint reasoning about natu-
ral language and images, with a focus on semantic
diversity, compositionality, and visual reasoning
challenges. The task is to determine whether a
natural language caption is true about a pair of
images. The dataset consists of over 100k exam-
ples of English sentences paired with web images.
We modify the segment embedding mechanism in
VisualBERT and assign features from different im-
ages with different segment embeddings. We use
an off-the-shelf detector from Detectron (Girshick
et al., 2018) to provide image features and use 144
proposals per image.4 Results are in Table 5. Vi-
sualBERT w/o Early Fusion and VisualBERT w/o
COCO Pre-training surpass the best model in Suhr
et al. (2019) (MaxEnt) by a large margin while Vi-
sualBERT widens the gap. LXMERT is pre-trained
on a much larger dataset and thus shows superior
performance.

B.4 Flickr30K Entities

Flickr30K Entities dataset tests the ability of sys-
tems to ground phrases in captions to bounding
regions in the image. The task is, given spans from
a sentence, selecting the bounding regions they cor-
respond to. The dataset consists of 30k images and

4We conducted a preliminary experiment on the effect of
the number of object proposals kept per image. We tested
models with 9, 18, 36, 72, and 144 proposals, which achieve
an accuracy of 64.8, 65.5, 66.7, 67.1, and 67.4 respectively on
the development set.

nearly 250k annotations. We adapt the setting of
BAN (Kim et al., 2018), where image features from
a Faster R-CNN pre-trained on Visual Genome are
used. For task specific fine-tuning, we introduce
an additional self-attention block and use the aver-
age attention weights from each head to predict the
alignment between boxes and phrases. For a phrase
to be grounded, we take whichever box receives
the most attention from the last sub-word of the
phrase as the model prediction. Results are listed
in Table 6. VisualBERT outperforms the current
state-of-the-art model BAN. In this setting, we do
not observe a significant difference between the
ablation model without early fusion and our full
model, arguing that perhaps a shallower architec-
ture is sufficient for grounding when supervision is
available.

C Ablation Study

In this section we conduct ablation study on what
parts of our approach are important to Visual-
BERT’s strong performance. We compare two ab-
lation models in the Experiment section and four
additional variants on NLVR2. For ease of com-
putations, these models are trained with only 36
features per image (including the full model). Our
analysis (Table 7) aims to investigate the contribu-
tions of the following four components in Visual-
BERT:

C1: Task-agnostic Pre-training We investigate
the contribution of task-agnostic pre-training by



Model Dev

VisualBERT 66.7

C1
VisualBERT w/o Grounded Pre-training 63.9
VisualBERT w/o COCO Pre-training 62.9

C2 VisualBERT w/o Early Fusion 61.4

C3 VisualBERT w/o BERT Initialization 64.7

C4 VisualBERT w/o Objective 2 64.9

Table 7: Performance of the ablation models on
NLVR2. Results confirm the importance of task-
agnostic pre-training (C1) and early fusion of vision
and language (C2).

entirely skipping such pre-training (VisualBERT
w/o COCO Pre-training) and also by pre-training
with only text but no images from COCO (Visual-
BERT w/o Grounded Pre-training). Both variants
underperform, showing that pre-training on paired
vision and language data is important.

C2: Early Fusion We include VisualBERT w/o
Early Fusion to justify allowing early interaction
between image and text features, confirming again
that multiple interaction layers between vision and
language are important.

C3: BERT Initialization All models discussed
before are initialized from a pre-trained BERT. To
understand its contribution, we introduce a vari-
ant that is randomly initialized and then trained
as the full model. While it seems weights from
language-only pre-trained BERT are important, per-
formance does not degrade as much as we expect,
arguing that the model is likely learning many of
the same useful aspects about grounded language
during COCO pre-training.

C4: The sentence-image prediction objective
We introduce a model without the sentence-image
prediction objective during pre-training (Visual-
BERT w/o Objective 2). Results suggest that this
objective has positive but less significant effect,
compared to other components.

Overall, the results confirm that the most impor-
tant design choices are task-agnostic pre-training
(C1) and early fusion of vision and language (C2).
In pre-training, both the inclusion of additional
COCO data and using both images and captions
are paramount.


